- 1. (24%) In each case, classify the differential equations below as separable, linear, or exact. In each case, solve the ode; in case of an IVP, find the particular solution satisfying the initial condition:
 - a. $\left(\cos t \sin t ty^2\right) + y\left(1 t^2\right)\frac{dy}{dt} = 0$

b.
$$\frac{dy}{dt} = \frac{t}{y - t^2 y}; y(0) = -4$$

c.
$$\frac{dy}{dt} + 2ty = f(t), y(0) = 2; f(t) = \begin{cases} t; 0 \le t < 1\\ 0; t \ge 1 \end{cases}$$

(Remark: The solution to this IVP should be **continuous**)

(10%) Find an integrating factor to the following ode that turns it into an exact one. <u>Do not solve the ode</u>.

$$6ty + \left(9t^2 + 4y\right)\frac{dy}{dt} = 0$$

3. (15%) A 30-gallon tank initially contains 15 gallons of saltwater containing 6 pounds of salt. Suppose saltwater containing 1 pound of salt per gallon is pumped into the top of the tank at the rate of 2 gallons per minute, while the well-mixed solution leaves the bottom of the tank at the rate of 1 gallon per minute. How much salt is in the tank when the tank is full?

4. Consider the differential equation $\frac{dy}{dt} = -\frac{y}{t} + \frac{t-1}{2y}$. This equation is neither linear

nor separable; however it can be turned into one or the other as follows:

a. (4%) Define a new variable $u = y^2$. Find an expression relating $\frac{dy}{du}$ and $\frac{du}{du}$

$$\frac{1}{dt}$$
 and $\frac{1}{dt}$.

b. (6%) Show that the given differential equation takes the new form $\frac{du}{dt} = -\frac{2}{t}u + (t-1).$

c. (6%) Solve the new ode and conclude the family of solutions of the original one.

- 6. (15%)
 - a. Do the phase line of the differential equation $\frac{dy}{dt} = \frac{(1-y)(2y+1)}{y^2}$
 - b. Classify its equilibrium points.
 - c. Sketch 4 solutions satisfying the following 4 initial conditions respectively: y(0) = 2; y(0) = 0.5; y(0) = -0.75; y(0) = -1.

7. (10%) Below are two intersecting solutions for the ode $\frac{dx}{dt} = x^{\frac{2}{3}}$; $x(0) = x_0$. Justify why the intersection at the point $(0, x_0)$ does not contradict the uniqueness theorem for initial value problems.

<u>SCRATCH</u>