1. (24\%) In each case, classify the differential equations below as separable, linear, or exact. In each case, solve the ode; in case of an IVP, find the particular solution satisfying the initial condition:
a. $\quad\left(\cos t \sin t-t y^{2}\right)+y\left(1-t^{2}\right) \frac{d y}{d t}=0$
b. $\frac{d y}{d t}=\frac{t}{y-t^{2} y} ; y(0)=-4$
c. $\frac{d y}{d t}+2 t y=f(t), y(0)=2 ; f(t)=\left\{\begin{array}{l}t ; 0 \leq t<1 \\ 0 ; t \geq 1\end{array}\right.$
(Remark: The solution to this IVP should be continuous)
2. ($\mathbf{1 0 \%} \mathbf{)}$) Find an integrating factor to the following ode that turns it into an exact one. Do not solve the ode.

$$
6 t y+\left(9 t^{2}+4 y\right) \frac{d y}{d t}=0
$$

3. ($\mathbf{1 5 \%} \mathbf{\%}$) A 30 -gallon tank initially contains 15 gallons of saltwater containing 6 pounds of salt. Suppose saltwater containing 1 pound of salt per gallon is pumped into the top of the tank at the rate of 2 gallons per minute, while the well-mixed solution leaves the bottom of the tank at the rate of 1 gallon per minute. How much salt is in the tank when the tank is full?
4. Consider the differential equation $\frac{d y}{d t}=-\frac{y}{t}+\frac{t-1}{2 y}$. This equation is neither linear nor separable; however it can be turned into one or the other as follows:
a. (4\%) Define a new variable $u=y^{2}$. Find an expression relating $\frac{d y}{d t}$ and $\frac{d u}{d t}$.
b. (6\%) Show that the given differential equation takes the new form $\frac{d u}{d t}=-\frac{2}{t} u+(t-1)$.
c. (6%) Solve the new ode and conclude the family of solutions of the original one.
5. (10\%) Without solving, verify that the direction field below corresponds to the ode $\frac{d y}{d t}=t(y-1)$. Also plot few solutions to this ode.

6. (15\%)
a. Do the phase line of the differential equation $\frac{d y}{d t}=\frac{(1-y)(2 y+1)}{y^{2}}$
b. Classify its equilibrium points.
c. Sketch 4 solutions satisfying the following 4 initial conditions respectively: $y(0)=2 ; y(0)=0.5 ; y(0)=-0.75 ; y(0)=-1$.
7. $\mathbf{(1 0 \%)}$) Below are two intersecting solutions for the ode $\frac{d x}{d t}=x^{2 / 3} ; x(0)=x_{0}$. Justify why the intersection at the point $\left(0, x_{0}\right)$ does not contradict the uniqueness theorem for initial value problems.

SCRATCH

